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Abstract

Powerful equations and an efficient algorithm are proposed for determining the probability of failure of loaded com-
ponents with complex shape, containing multiple types of flaws. The equations are based on the concept �conditional indi-
vidual probability of initiating failure� characterising a single flaw given that it is in the stressed component. The proposed
models relate in a simple fashion the conditional individual probability of failure characterising a single flaw (estimated by
a Monte Carlo simulation) to the probability of failure characterising a population of flaws. The derived equations con-
stitutes the core of a new statistical theory of failure initiated by flaws in the material, with important applications in opti-
mising designs by decreasing their vulnerability to failure initiated by flaws during overloading or fatigue cycling.

Methods have also been developed for specifying the maximum acceptable level of the flaw number density and the
maximum size of the stressed volume which guarantee that the probability of failure initiated by flaws remains below a
maximum acceptable level. An important parameter referred to as �detrimental factor� is also introduced. Components
with identical geometry and material, with the same detrimental factors are characterised by the same probability of fail-
ure. It is argued that eliminating flaws from the material should concentrate on types of flaws characterised by large
detrimental factors.

The equations proposed avoid conservative predictions resulting from equating the probability of failure initiated by a
flaw in a stressed region with the probability of existence of the flaw in that region.
� 2005 Elsevier Ltd. All rights reserved.
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1. Background

Early-life failures are often the result of poor manufacturing and inadequate design. A substantial propor-
tion of early-life failures is also due to the presence of flaws in the material.
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Suppose that a component with volume V is subjected to uniaxial tension. In the component, there exist Nr

critical flaws which initiate failure at the loading stress r. Suppose also that the volume V has been divided into
M small zones with volumes DV. The probability that no small volume DV will contain a critical flaw is
ð1� DV =V ÞNr � 1� N rDV =V ¼ 1� nrDV
where nr = Nr/V is the flaw number density. The probability p0 that the entire volume V will survive the load-
ing stress r with no failure, equals the probability that all small zones with volumes DV will survive the stress
r:
p0 ¼ ð1� nrDV ÞM ¼ expðM ln½1� nrDV �Þ � expð�nrV Þ ð1Þ

because for DV � 0, ln[1 � nrDV] � �nrDV and V = M · DV.

In order to use Eq. (1), an expression for nr is required. Weibull (1951) proposed the empirical relationship
nrV 0 ¼
r
r0

� �m

ð2Þ
where V0, r0 and m are constants. Experimental data related to failure of brittle material conformed well with
this assumption (Hull and Clyne, 1996). Given Eq. (2), the probability of failure pr of the stressed volume V is
determined from the Weibull distribution
pr ¼ 1� exp � V
V 0

r
r0

� �m� �
ð3Þ
which is common for describing the strength distribution of materials (Jayatilaka and Trustrum, 1977;
Bergman, 1985).

An important factor affecting the strength of components is the presence of flaws due to processing, man-
ufacturing or mechanical damage during service. Currently, most of the existing models relate the probability
of failure initiated by defects to the probability of finding a defect of particular size in the stressed volume.
Thus, Curry and Knott (1979) and Wallin et al. (1984), in their statistical models for carbide induced brittle
fracture in steels, related the probability of brittle fracture to the probability that ahead of the crack tip a car-
bide will exist, which has a radius greater than some critical value, specified by the Griffith�s crack advance-
ment criterion.

Relating the probability of existence of a flaw with critical size to the probability of fracture however, can
be made only if the flaws are very weak and initiate fracture easily. In the general case, this approach is overly
conservative, because only a small number of flaws of any particular size are liable to initiate failure, even
though subjected to high matrix strains. Hahn (1984) pointed out that the crack nucleation on hard particles
is assisted by plastic deformation of the surrounding matrix but requires an additional stress raiser or a defect
in the particles. Furthermore, to be �eligible�, the particle should have an orientation favourable for nucleating
a crack and the misorientations at the particle boundary should produce a low value of the local fracture
toughness. All of these requirements are satisfied with certain probability.

It is necessary to point out that that the probability of initiating fracture is also a function of the orientation
of the flaws regarding the stress tensor.

Batdorf and Crose (1974) proposed a statistical model for fracture of brittle materials containing randomly
oriented microcracks. They demonstrated that for uniaxial tension their theory was equivalent to Weibull�s.

Weakest-link theories pertinent to fracture of brittle materials (Evans, 1978) yield a probability of failure U
given by
UðS; V Þ ¼ 1� exp �
Z

V
dV
Z Kc

0

gðmÞdm

� �
ð4Þ
where Kc is the fracture strength, V is a sample volume and g(m)dm is the number of flaws per unit volume with
strength between m and m + dm. In fact, the product dV

R Kc

0
gðmÞdm gives the number of defects with strength

smaller than or equal to Kc, in the infinitesimal volume dV. For the probability of failure pr in a volume V

with stress r, Danzer and Lube (1996) proposed the equation
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pr ¼ 1� expð�N cÞ ð5Þ

where N c is the expected number of defects with critical size in the stressed volume.

Both Eqs. (4) and (5) are based on the expected number of critical defects (the defects which initiate frac-
ture) in the stressed volume. The number of critical defects in the volume however is not a measurable quantity
and is usually unknown.

Using the concept individual probability F(r) of triggering fracture by a single flaw, in earlier work
(Todinov, 2000) the probability of failure of a component loaded at a constant stress level r was determined
to be:
pr ¼ 1� exp½�kVF ðrÞ� ð6Þ

Eq. (6) is based on the assumption that in the stressed volume V, the locations of the random flaws follow a
homogeneous Poisson process with constant density k = const. The type of flaws has a strong influence on the
probability of failure. Due to tensile tessellation stresses for example, alumina or silicon-based inclusions in
steel wire are more likely to become initiators of fracture compared to sulphide inclusions of the same diam-
eter and numbers. In another example, sharp crack-like defects are characterised by a larger probability of
initiating fracture compared to defects with globular shape. Furthermore, crack-like defects with a crack plane
perpendicular to the direction of the acting tensile stress are more likely to initiate fracture than cracks ori-
ented along the direction of the tensile stress.

If all flaws were critical (initiate failure at a stress level r) then F(r) = 1 and the probability that at least a
single flaw will reside in the stressed volume V is
pr ¼ 1� e�kV ð7Þ

which also gives the probability of failure. Since kV is the expected number of critical flaws in the volume V,
Eq. (7) is equivalent to Eq. (5).

Next, we will show that Eq. (6) is valid not only for a simple uniaxial stress state. It can also be generalised
for a component with complex shape and loading containing flaws.

2. General equation related to the probability of failure of a stressed component with complex shape

Suppose that a component with complex shape is loaded in an arbitrary fashion, and contains non-
interacting flaws. It is assumed that the flaws locations in the volume V follow a non-homogeneous Poisson
process. The variation of the flaw number density in the volume of the component is described by the function
k(x,y,z). It gives the flaw number density in the infinitesimal volume dv at a location with coordinates x, y, z
(Fig. 1).

Suppose that a single flaw is characterised by the conditional individual probability Fc of initiating failure
given that the flaw is present in the stressed component. The index �c� in Fc means that the individual proba-
bility of initiating failure has been conditioned on the existence of a flaw in the component. This probability is
V

Non-interacting
flaws

F1

Fi

dv, λ(x,y,z)

F2

F3

Fig. 1. A component with complex shape, loaded with arbitrary forces Fi.
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different from the probability pf of failure of the component associated with a population of flaws. The prob-
ability pf is related to the whole population of flaws and is not conditioned on the existence of flaws in the
component. In other words, pf is still a valid concept even if flaws are not present at all in the component.

The probability pf (unconditional) of failure associated with a population of flaws can be determined by
subtracting from unity the probability p0 of the complementary event: �none of the flaws will initiate failure�.
The probability p0

ðrÞ of the compound event: exactly r flaws exist in the volume V of the component and none of

them will initiate failure is a product
p0
ðrÞðV Þ ¼ exp �

Z
V

kðx; y; zÞdv
� � R

V kðx; y; zÞdv
� �r

r!
½1� F c�r ð8Þ
of the probabilities of two statistically independent events: (i) �exactly r flaws reside in the volume V�, the prob-
ability of which is given by the non-homogeneous Poisson distribution
P ðX ¼ rÞ ¼ exp �
Z

V
kðx; y; zÞdv

� � R
V kðx; y; zÞdv

� �r

r!
and (ii) �none of the r flaws will initiate failure�, the probability of which is [1 � Fc]
r. The event no failure will be

initiated in the volume V, is the union of disjoint events characterised by probabilities p0
ðrÞ and its probability p0,

according to the total probability theorem, is
p0 ¼
X1
r¼0

p0
ðrÞ ¼ exp �

Z
V

kðx; y; zÞdv
� �X1

r¼0

½1� F c�
R

V kðx; y; zÞdv
� �r

r!
ð9Þ
Since
X1
r¼0

½1� F c�
R

V kðx; y; zÞdv
� �r

r!
¼ exp ½1� F c�

Z
V

kðx; y; zÞdv
� �

;

Eq. (9) can be simplified to
p0 ¼ exp �F c

Z
V

kðx; y; zÞdv
� �
and the probability pf of failure for the component with volume V becomes
pf ¼ 1� exp �F c

Z
V

kðx; y; zÞdv
� �

ð10Þ
Eq. (10) also holds for the two- and one-dimensional case if the volume V is replaced by the area S or the
length L of the component. Correspondingly, the flaw number density will be a number of flaws per unit area
or unit length.

Since k ¼ 1
V

R
V kðx; y; zÞdv is the expected (average) number density of flaws in the volume V, Eq. (10) can

also be presented as
pf ¼ 1� exp �kVF c

� �
ð11Þ
A very important special case for the practical applications is obtained when the flaws follow a homogeneous
Poisson process in the volume V of the specimen. In this case, the flaws locations are uniformly distributed in
the bulk of the component. The defect number density is constant k(x,y,z) = k = const. and the probability of
failure in Eq. (10) becomes
pf ¼ 1� exp �kVF cð Þ ð12Þ
Unlike Eqs. (4) and (5), k in Eq. (12) is the number density of all flaws in the stressed volume V and is a
measurable quantity.

An upper bound of the probability of failure pf can be produced if weak flaws (Fc � 1) are assumed. This is
a very conservative assumption, suitable in cases where the upper bound of the probability of failure is
required.
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Eq. (11) can be generalised for multiple type of flaws. Thus, if M different types of flaws are present, the
probability that no failure will be initiated is
p0 ¼ expð�k1VF 1cÞ � � � � � expð�kM VF McÞ ¼ exp �V
XM

i¼1

kiF ic

 !
where ki and Fic are the average flaw number density and the conditional individual probability of initiating
failure characterising the ith type of flaws. This equation expresses the probability that no failure will be ini-
tiated by the first, the second, . . ., the Mth type of flaws. The probability of failure then becomes
pf ¼ 1� exp �V
XM

i¼1

kiF ic

 !
ð13Þ
In order to distinguish between a complex stress state and a uniaxial stress state, for a volume V subjected to a
uniaxial stress r, the probability Fc in Eq. (11) will be denoted by F(r).

3. Determining the conditional individual probability of initiating failure, characterising a single flaw

The conditional individual probability Fc of initiating failure characterising a single flaw can be estimated
using a Monte Carlo simulation. Random locations and orientations for the flaw are generated in the volume
V of the component, according to the flaw number density k(x,y,z). For the important special case where the
flaw number density is constant throughout the volume k = const., the generated random locations should be
uniformly distributed in the volume V. For each random location and orientation, a random flaw size is gen-
erated by sampling the size distribution of the flaws. Given the specified location, orientation and size of the
flaw, a failure criterion is applied to check whether the flaw will be unstable (will initiate failure).

Eq. (11) is very flexible and general because it permits the conditional individual probability Fc of initiating
failure to be estimated using different methods. Indeed, the failure criterion is not restricted to fracture
mechanics criteria only. It can also be based on other models related to the micromechanics of initiating fail-
ure. For the special case of brittle fracture and flaws whose shape can be approximated well by penny-shaped
cracks for example, a mixed-mode coplanar strain-energy release rate criterion (Paris and Sih, 1965):
G ¼ 1� m2ð ÞK2
I

E
þ 1� m2ð ÞK2

II

E
þ 1þ mð ÞK2

III

E
ð14Þ
can be used (Evans, 1978).
In Eq. (14), G is the strain energy release rate; KI, KII and KIII are the three stress-intensity factors correspond-

ing to the three basic loading modes which are functions of the stress magnitude and crack geometry; E is the
elastic modulus and m is the Poisson ratio. Fracture, according to this criterion occurs if the value of the strain
energy release rate G exceeds the critical strain energy release rate Gc for the material. This criterion is based on
the assumption that planar penny-shaped cracks propagate along their initial planes if G > Gc is fulfilled.

The conditional individual probability Fc of initiating failure characterising a single flaw is estimated by
dividing the number of simulations in which failure has been initiated to the total number of Monte Carlo
trials. Finally, substituting the estimate Fc in Eq. (11) yields the probability of failure of the stressed compo-
nent, irrespective of its geometry, type of loading and flaw number density! The algorithm in pseudocode is given
in Appendix A.

Using this algorithm, for different loading levels, the lower tail of the strength distribution for any loaded
component with internal flaws can be constructed. For a specified time interval, plugging the strength distri-
bution into the overstress reliability integral (Todinov, 2004) yields the reliability of the component associated
with an overstress failure mode.

The efficiency of the algorithm can be increased significantly if the loaded component is divided into N sub-
volumes. If a finite element solution is used, the sub-volumes are simply the finite elements which partition the
volume of the component.

In case of flaws following a homogeneous Poisson process, in order to generate a random flaw location, a
sub-volume is randomly selected first, with probability proportional to its volume fraction (Fig. 2).
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Fig. 2. Random selection of a finite element (sub-volume) where the flaw resides.
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The discrete distribution specifying the probabilities with which the finite element is selected is
X 1 2 . . . N

P ðX ¼ xÞ DV 1=V DV 2=V . . . DV N=V
where X = 1,2, . . . ,N is the index of the sub-volume, DVX is its volume and V is the total volume of the com-
ponent. The probability with which the ith sub-volume is selected is proportional to its volume fraction DVi/V.
The algorithm for selecting a random sub-volume therefore consists of the following steps:

(i) Construct the cumulative distribution
P ðX 6 kÞ � F ðkÞ ¼
X
i6k

DV i=V
of the random variable X (the index of the selected sub-volume);
(ii) Generate an uniformly distributed random number u in the interval (0,1); (iii) If u 6 F(1) = DV1/V, the

first sub-volume is selected, else if F(k � 1) < u 6 F(k), the kth sub-volume is selected (Fig. 2).

Once a sub-volume has been selected, a defect location is generated inside and the principal stresses at this
location are calculated (using interpolation in the case of finite elements). In case of a stress state obtained by
using the method of finite elements, the calculation speed can further be increased at the expense of a slight
decrease in the calculation precision if another type of approximation is used. Instead of generating a location
for the flaw inside the randomly selected finite element and calculating the principal stresses at that location,
the principal stresses in the center of the finite element are used. Consequently, no flaw locations inside the
randomly selected finite elements are generated and since most finite element solvers provide information
regarding the three principal stresses at the center of the finite elements, the speed of computation is increased
significantly.

It must be pointed out, that although Eq. (11) gives the probability of failure for the component, it does not
reveal the distribution of the locations where failure will be initiated most frequently. Failure will be initiated
most frequently in the highest stressed regions where the conditions for a flaw instability will be met first dur-
ing over-loading.

If in the highest stressed region, no flaw with appropriate type, orientation and size for initiating failure is
present, failure will be initiated in a region with lower stress, where an appropriate combination of stress, flaw
type, orientation and size exists. The proposed model is precise for loaded components with flaws character-
ised by a relatively small number density because in this case, the assumption of �non-interacting� flaws will be
closely matched.

Eq. (11) is valid for an arbitrarily loaded component, with complex shape and non-homogeneous distribution
of the flaws. The power of the equation is in relating in a simple fashion the individual probability of failure Fc

characterising a single flaw (with locations following the specified non-homogeneous flaw number density
k(x,y,z)) to the probability of failure pf characterising the whole population of flaws.

Suppose that a direct Monte Carlo simulation was used to determine the probability of failure of the com-
ponent. In this case, at each simulation trial, a large number of flaws need to be generated and for each flaw, a
check needs to be performed to determine whether there will be at least a single unstable flaw which initiates
failure. If Eq. (11) is used to determine the probability of failure of the component, only a single simulation
trial involving a single act of generating flaws in the component volume would be necessary. The purpose is to
collect statistical information from all parts of the volume stressed in different ways, necessary to estimate the
conditional individual probability Fc. Once Fc has been estimated, it is simply plugged into Eq. (11) to deter-
mine the probability of failure of the component.
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Because only a single simulation trial is involved instead of thousands or millions of trials, the calculation
speed of the proposed algorithm is significantly larger than the calculation speed of the direct simulation.
Using this procedure, for different loading levels, the lower tail of the strength distribution of any loaded com-
ponent with internal flaws can be constructed.

It is important to point out that Fc incorporates the influence of the particular loading (stress) state
throughout the entire volume of the component. If the stress state in the loaded component is altered, Fc will
be altered too despite the fact that all locations, orientations and flaw sizes will remain the same. Another
important feature of Fc which distinguishes it from the probability of failure pf is that while pf is an absolute
probability, Fc is a conditional probability. It is the probability that a flaw will cause failure, given that it is
already inside the volume of the stressed component. By �moving� the flaw randomly inside the component
and by simultaneously changing its shape and orientation, statistical information regarding the conditional
probability Fc is gathered.

In effect, Eqs. (10)–(12) constitute the core of a new theory of failure initiated by flaws. It avoids overly
conservative estimates for the probability of failure, which result from equating the probability that a flaw will
initiate failure in a stressed region with the probability that the flaw will reside in the region. The new concept
�conditional individual probability of initiating failure� characterising a single flaw acknowledges the fact that
not all flaws present in the material will initiate failure. In other words, flaws initiate failure with certain
probability.

Important application areas of the derived equation are (i) determining the lower tail of the strength dis-
tribution for components containing flaws and (ii) assessing the vulnerability of designs to failure initiated
by flaws. An application of Eq. (11) and the algorithm in case of fracture caused by sharp penny-shaped cracks
will be published elsewhere.

4. Statistics of failure initiated by flaws

The product k 0 = kFc in Eq. (12), which we refer to as detrimental factor, is an important parameter. Con-
sider for example two components with identical material and geometry. One of the components is character-
ised by flaws with a high number density k1 which initiate failure with small probability Fc1 and the other
component is characterised by flaws with a low number density k2 which initiate failure with large probability
Fc2. If both components are characterised by the same detrimental factors (k1Fc1 = k2Fc2), the probabilities of
failure initiated by flaws for both components will be the same.

Eq. (13) shows that the most dangerous type of flaws is the one characterised by the largest detrimental fac-

tor kiF ic. Consequently, the efforts towards eliminating flaws from the material should concentrate on types of
flaws with large detrimental factors.

For a uniaxial stress r and very weak flaws which initiate failure easily, the conditional individual proba-
bility of initiating failure can be assumed to be unity F(r) = 1. In this case, the probability of failure
pf = 1 � exp(�kV) of the stressed volume V equals the probability that at least one weak flaw will be present
in it. In the general case however, the conditional individual probability Fc of initiating failure characterising a
single flaw will be a number between zero and unity. Consequently, Eq. (11) avoids overly conservative pre-
dictions regarding the probability of failure of the component.

From Eq. (11), it follows that the smaller the stressed volume V, the smaller the probability of failure.
This is one of the reasons why between two similar components, made of the same material, the larger com-

ponent is weaker.
The Weibull distribution (3) can be obtained as a special case of Eq. (11). Indeed, if the conditional indi-

vidual probability of triggering failure at the stress level r can be approximated by the power law
F cðrÞ ¼
1

V 0

r
r0

� �m

ð15Þ
where V0 and r0 are constants, the substitution in Eq. (11) gives the Weibull distribution (3). In other words,
for material with flaws, whose conditional individual probabilities of initiating failure increase with the applied
stress according to the power law (15), the probability of failure is described by the Weibull distribution. If the
dependence Fc(r) is different from Eq. (15) however, a function different from the Weibull distribution will be
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obtained after the substitution in Eq. (11). Indeed, suppose that F(r) is described by the monotonically
increasing function F(r) = 1 � exp{�krr}. After the substitution in Eq. (11), the probability of failure
becomes
Fig. 3.
stresse
pr ¼ 1� expð�kV Þ � exp½kV � expð�krrÞ�

which is not a Weibull distribution.

5. Limiting the probability of failure and decreasing the vulnerability of designs to failure caused by flaws

By solving Eq. (11) numerically with respect to k (given a specified maximum acceptable probability of fail-
ure pf max), an upper bound ku of the average flaw number density upper bound can be determined:
ku ¼ �
1

VF c

lnð1� pf maxÞ ð16Þ
This upper bound guarantees that whenever the average flaw number density k satisfies k 6 ku, the probability
of failure of the component will be smaller than pf max.

Fig. 3 gives the dependence between the flaw number density upper bound ku and pf max, for different values
of the stressed volume V, in case of very weak flaws (Fc = 1).

Consider now a component with volume V, which has been cut from material with flaw number density k
and subjected to a uniaxial stress r. It is assumed that the flaws, whose locations follow a homogeneous Pois-
son process, are from a single type. Suppose that failure is controlled solely by the size of the flaws in the mate-
rial and does not depend on their orientation and shape. The size distribution G(d) of the flaws is the
probability G(d) = P(D 6 d) that the size D of a flaw will not be greater than a specified value d. Let dr denote
the critical flaw size for the stress level r. In other words, a flaw with size greater than the critical size dr will
initiate failure at a stress level r.

Given the size distribution of the flaws, we can determine the maximum acceptable value V of the stressed
volume that limits the probability of failure below a maximum acceptable level.

In case of failure controlled solely by the size of the flaws, F(r) in Eq. (6) becomes 1 � G(dr) which is the
probability that a flaw will initiate failure at the stress level r. Substituting F(r) = 1 � G(dr) in Eq. (6) gives
pr ¼ 1� expf�kV ½1� GðdrÞ�g ð17Þ

for the probability pr of initiating failure at a stress level r.
Maximum acceptable probability of failure, p
 f max
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A flaw number density upper bound, as a function of the maximum acceptable probability of failure, for different values of the
d volume.
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Eq. (17) can be used for calculating the probabilities of failure from the lower tail of the strength distribu-
tion in case of failure controlled by the size of the flaws. Limiting the size of the stressed volume limits the
probability of failure initiated by flaws, which is of significant importance to the design for reliability. By solv-
ing Eq. (17) with respect to V (given a specified maximum acceptable probability of failure pr max at a stress
level r), an upper bound V* for the stressed volume can be determined:
V � ¼ � 1

k½1� GðdrÞ�
lnð1� pr maxÞ ð18Þ
The upper bound V* guarantees that if for the stressed volume, V 6 V* is satisfied, the probability of failure pr

will be smaller than the maximum acceptable level pr max.

6. Optimising designs by decreasing their vulnerability to failure caused by flaws during overloading

From Eq. (12) it is clear that given the volume of the component, the probability of failure pf during over-
loading can be minimised by minimising the detrimental factor kFc associated with the flaws. In case of a large
flaw number density k, the probability of failure pf is very sensitive to the conditional individual probability of
failure Fc and relatively insensitive to the number density of the flaws k. Consequently, a significant reduction
of the probability of failure can be achieved by a slight reduction of the conditional individual probability of
failure Fc. Conversely, in case of a large conditional individual probability of failure, the probability of failure
becomes sensitive to the flaw number density and relatively insensitive to the conditional individual probabil-
ity of failure. Consequently, an efficient reduction of the probability of failure can be achieved by reducing the
flaw number density. The decision about which method of reduction for the probability of failure should be
preferred depends also on the balance between the cost of investment and the actual risk reduction associated
with it. If the cost of investment towards the risk reduction outweighs the benefit from the risk reduction, no
action is taken. If the benefit from the risk reduction however outweighs the cost of investment towards it,
measures are implemented to reduce the risk.

As can also be verified from Eq. (12) given the volume of the component, the size distribution of the flaws
and their number density, minimising the probability of failure requires minimising the conditional individual
probability of failure Fc. The advantage of the new equation for decreasing the vulnerability of designs to fail-
ure caused by flaws can be illustrated by the following simple example.

A solid bar with length L and constant cross-section S (Fig. 4a) contains flaws whose locations in the vol-
ume of the bar follow a homogeneous Poisson process, with a constant flaw number density k and size distri-
bution according to Fig. 4b. The bar is firmly supported (at a point A in Fig. 4a) at a distance x from its left
end. There exists also a chance of an excessive overload in axial direction. Given that overloading of the bar is
d1

Flaw size D, μm

Probability density

 d2

A

x L-x

P1P2

a

b

Fig. 4. (a) A solid bar loaded in tension by dynamic forces; (b) Size distribution of the flaws in the bar.
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present, there exists a probability q that a dynamic force of magnitude P1 will overload the bar in tension right
from the support and a probability 1 � q that a dynamic force of magnitude P2 < P1 will overload the bar in
tension left from the support. Suppose that if the bar is overloaded in tension by a dynamic force of magnitude
P1, any flaw with size greater than the critical value d1 (Fig. 4b) will cause failure. The probability
P(D > d1) = a1 of having a flaw with size D greater than d1 is equal to the area a1 beneath the upper tail of
the probability density distribution of the flaw size in Fig. 4b, located to the right of d1. Accordingly, if the
bar is overloaded in tension by the dynamic force P2, any flaw with size D greater than the critical value d2

(d2 > d1) will cause failure. The probability P(D > d2) = a2 that a randomly selected flaw will have a size
greater than d2, is equal to the area a2 beneath the upper tail of the probability density distribution located
to the right from point d2 in Fig. 4b.

Given that overloading is present, according to the total probability theorem, the conditional individual
probability of failure associated with a single flaw is
F c ¼ ðx=LÞð1� qÞa2 þ ð1� x=LÞqa1 ð19Þ
In Eq. (19), x/L is the probability that a single flaw with a random location existing with certainty in the
volume of the bar, will be on the left side of the support; (1 � x/L) is the probability that the flaw will be on the
right side of the support. Given that an overloading is present, the term (x/L)(1 � q)a2 in Eq. (19) is the prob-
ability that failure will be initiated left from the support and the term (1 � x/L)qa1 is the probability that fail-
ure will be initiated right from the support. Substituting the values in Eq. (12), the probability of failure of the
bar given that overloading is present becomes:
pf ¼ 1� expð�kLS½ðx=LÞð1� qÞa2 þ ð1� x=LÞqa1�Þ ð20Þ
An important consideration during selecting the location of the support is selecting its distance x in such a
way that the probability of failure triggered by flaws in case of overloading is minimised. Clearly, this is
achieved when the conditional individual probability of failure Fc in Eq. (19) is minimised. Since Fc in Eq.
(19) is a linear function of x, the minimum is attained when either x = 0 or x = L. Since Fcjx=0 = qa1 and
Fcjx=L = (1 � q)a2, if qa1 < (1 � q)a2 the support location minimising the probability of failure is at the left
end of the bar. If qa1 > (1 � q)a2, the support location minimising the probability of failure is at the right
end of the bar. Finally, if qa1 = (1 � q)a2, the support could be anywhere along the bar because, in this case,
the conditional individual probability of failure is the same. Interestingly, if qa1 5 (1 � q)a2 the bar is least
vulnerable to failure caused by flaws when the support is located at one of the ends, irrespective of the numer-
ical values of the controlling parameters L, S, k, a1, a2 and q.

The parameters k and the size distribution in Fig. 4 can be determined using X-ray or ultrasonic methods
which allows us to calculate the probability of failure of the bar. It is not clear however how can the proba-
bility of failure of the bar be calculated by using Eqs. (4) or (5). The expected number of critical defects in
Eq. (5) is not a measurable quantity. What is being measured using methods from the quantitative metallog-
raphy is the actual number of flaws and the actual flaw size distribution.
7. A stochastic model related to the fatigue life distribution of a component containing defects

An equation similar to Eq. (11) can be developed for determining the fatigue life distribution for a loaded
component whose surface contains manufacturing defects or defects caused by a mechanical damage, with a
specified number density, geometry and size distribution. The model is based on (i) the concept conditional
individual probability that the fatigue life associated with a single defect will be smaller than a specified value
given that the defect is on the stressed surface, (ii) a model relating this conditional probability to the uncon-
ditional probability that the fatigue life of a component containing a population of defects will be smaller than
a specified value and (iii) the stress field of the loaded surface, determined by an analytical or numerical
method.

Suppose that a component with complex geometry is fatigue loaded in an arbitrary fashion, and contains
non-interacting surface flaws. It is assumed that the flaws locations on the surface of the component with total
area S follow a non-homogeneous Poisson process. The variation of the defect number density on the surface
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of the component is described by the function k(x,y) which gives the defect number density in the infinitesimal
surface element ds at a location with coordinates x, y.

Let Qc(n) denote the conditional individual probability (the index �c� stands for �conditional�) that the fati-
gue life characterising a single defect with location following the flaw number density k(x,y) on the compo-
nent�s surface will be smaller than n cycles, given that the defect resides on the surface. This probability is
different from the probability F(n) that the fatigue life of the component (whose failure is caused by a surface
defect from a population of surface defects) will be smaller than n cycles. The probability F(n) is related to the
whole population of defects and is not conditioned on the existence of defects on the surface of the compo-
nent. In other words, F(n) is still a valid concept even if defects are not present at all on the surface.

The probability p0
ðrÞ of the compound event: exactly r defects reside on the surface of the component and none

of their fatigue lives will be smaller than n cycles can be presented as a product
p0
ðrÞ ¼ exp �

Z
S

kðx; yÞds
� � R

S kðx; yÞds
� �r

r!
½1� QcðnÞ�

r ð21Þ
of the probabilities of two statistically independent events: (i) exactly r defects reside on the surface S, the prob-
ability of which is
P ðX ¼ rÞ ¼ exp �
Z

S
kðx; yÞds

� � R
S kðx; yÞds

� �r

r!
and (ii) none of the fatigue lives associated with the r defects will be smaller than n cycles, the probability of
which is [1 � Qc(n)]r. The event component�s fatigue life will be greater than n cycles is the union of the disjoint
events characterised by probabilities p0

ðrÞ and its probability p0, according to the total probability theorem, is
p0 ¼
X1
r¼0

p0
ðrÞ ¼ exp �

Z
S

kðx; yÞds
� �X1

r¼0

½1� QcðnÞ�
R

S kðx; yÞds
� �r

r!
ð22Þ
Since
X1
r¼0

½1� QcðnÞ�
R

S kðx; yÞds
� �r

r!
¼ exp ½1� QcðnÞ�

Z
S

kðx; yÞds
� �

;

Eq. (22) can be simplified to
p0 ¼ exp �QcðnÞ
Z

S
kðx; yÞds

� �
The probability F(n) that the fatigue life of the component will be smaller than n cycles is equal to the prob-
ability that on the component�s surface there will be at least one defect with fatigue life smaller than n cycles.
Accordingly,
F ðnÞ ¼ 1� exp �QcðnÞ
Z

S
kðx; yÞds

� �
ð23Þ
Since k ¼ 1
S

R
S kðx; yÞds is the expected (average) number density of the defects on the surface S, Eq. (23) can

also be presented as
F ðnÞ ¼ 1� exp �kSQcðnÞ
� �

ð24Þ
An important special case of Eq. (23) can be derived for defects following a homogeneous Poisson process on
the surface S. In this case, the defect number density is constant k(x,y) = k = const. and the probability that
the fatigue life will be smaller than a specified number n of cycles becomes
F ðnÞ ¼ 1� exp �kSQcðnÞð Þ ð25Þ

The conditional probability Qc(n) related to a single defect can be estimated using a Monte Carlo simulation,
similar to the way the conditional probability Fc in Eq. (11) was estimated.
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A single defect with a random orientation, shape, size and location following the specified number density
k(x,y) is generated on the surface S of the loaded component. Next, for each generated location, orientation
and size of the defect, the fatigue life is estimated. Qc(n) is obtained as a ratio of the number of defect locations
for which the predicted fatigue life was smaller than or equal to n cycles and the total number of simulation
trials. In this way, statistical information related to a single defect is collected first from different parts of the
stressed surface. If the stress state is altered, the conditional probability Qc(n) is also altered.

Substituting the estimated conditional probability Qc(n) in Eq. (25) yields the probability of fatigue failure
F(n) before n cycles.

The stress tensor, stress range and the mean stress characterising different locations of the flaw on the
stressed surface can be obtained from a finite element analysis. In case of flaws following a homogeneous
Poisson process, the stressed surface can be partitioned into finite elements and instead of generating random
locations for the defects, the finite elements can be randomly selected with probability proportional to their
areal fraction on the surface. After the selection of a finite element, a random location of the flaw can be
selected uniformly distributed inside the element.

Similar to the overstress failure model, in case of a stress distribution on the surface obtained by using the
method of finite elements, the calculation speed can further be increased at the expense of a slight decrease in
the calculation precision if an approximation is used. Instead of generating a location for the defect in the ran-
domly selected finite element and calculating the principal stresses at that location, the principal stresses in the
center of the finite element are used which are readily available from the file produced by the finite elements
solver. As a result, no defect locations inside the randomly selected finite elements are generated and the speed
of computation is increased significantly.

Parametric studies based on this stochastic model can be conducted to explore the influence of the uncer-
tainty associated with factors such as shape, size, number density of defects and associated residual stress
fields, on the confidence levels of the fatigue life predictions. The stochastic model will be an excellent basis
for specifying the maximum acceptable level of the defects number density which guarantees that the risk
of fatigue failure remains below a maximum acceptable level.

Another important application of the model is in optimising designs and loading in order to minimise the
probability of fatigue failure initiated by defects. In effect, this is a way to decrease the vulnerability of designs
to fatigue failure, initiated by surface flaws.

Similar to Eq. (11) proposed for the case of an overstress failure of a loaded component, Eqs. (23)–(25)
avoid overly conservative predictions related to the length of fatigue life. The reason is that the equations
are based on recognising the fact that not all defects in the stressed region will evolve into propagating fatigue
cracks. In other words, defects initiate propagating fatigue cracks with certain probability.

Calculating the probability of fatigue crack initiation for a particular combination of random defect size,
orientation, and location characterised by a particular stress tensor, incorporates models and experimental
data related to the micromechanics of initiating fatigue cracks (Jiang and Sehitoglu, 1999; Ringsberg et al.,
2000; Wilkinson, 2001).

Eq. (25) can also serve as a basis for specifying the maximum acceptable defect number density which guar-
antees that the risk of fatigue failure remains below a maximum acceptable level.
8. Conclusions

1. Powerful equations and a fast algorithm have been proposed for determining the probability of failure of
components with complex shape containing multiple flaws. The equations are based on the concept �con-
ditional individual probability of initiating failure� characterising a single flaw given that it is in the stressed
component.

2. The derived equations constitute the core of a new theory of failure for components with internal flaws. An
important application of the equations is in optimising designs by reducing their vulnerability to overstress
failure or fatigue failure initiated by flaws.

3. The proposed approach is an alternative to existing overly conservative approaches for predicting the prob-
ability of fracture and fatigue failure.
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4. Models have been proposed for specifying the maximum acceptable flaw number density and size of the
stressed volume which limit the probability of failure.

5. An important parameter referred to as detrimental factor has been introduced to characterise components
containing flaws.

Appendix A

An algorithm for Monte Carlo evaluation of the probability of failure of a loaded component with flaws
following a homogeneous Poisson process

procedure Calculate_stress_distribution()

{/* Calculates the distribution of stresses in the loaded component using analytical solution or a Finite Ele-

ments solution. In case of a Finite Element solution, the stress field is determined for a set of finite elements

(sub-volumes) */}.
procedure Calculate_principal_stresses()
{/* Calculates the magnitude and the direction of the principal stresses at the flaw location */}
procedure Select_a_random_finite_element()
{/* A random sub-volume is selected with probability proportional to its size */}
procedure Select_a_random_location_in_the_element()
{/* A random, uniformly distributed location is selected in the selected finite element */.}
procedure Interpolate_principal_stresses()
{/* Interpolates the principal stresses associated with the random locations in the selected finite elements */}
function Generate_random_flaw_size()
{/* Samples the size distribution of flaws and returns a random flaw size */}
procedure Generate_random_flaw_orientation()
{/* Generates the cosine directors of a randomly oriented flaw in space, with respect to the directions of the

principal normal stresses */}
procedure Generate_random_flaw_location()

{/* Generates a point with uniformly distributed coordinates (x,y, z) in the volume of the component */}
function Check_for_failure_initiation()
{/* Uses a failure criterion to check whether the flaw is unstable and returns TRUE if the flaw with the selected

location, size and orientation initiates failure */}
Failure_counter = 0;
Calculate_stress_distribution();

For i = 1 to Number_of_trials do

{
Generate_random_flaw_size ();

Generate_random_flaw_orientation();

In case of analytical solution for the distribution stresses in the component:
{
Generate_random_flaw_location();

Calculate_principal_stresses ();

}
In case of a finite element solution:
{
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Select_a_random_finite_element();

Select_a_random_location_in_the_element();

Interpolate_principal_stresses();

}
Unstable = Check_for_failure_initiation();

If (Unstable) then Failure_Counter = Failure_Counter + 1;
}

Fc = Failure_counter/Number_of_trials;
Probability_of_component_failure = 1 � exp(�kVFc).
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